
Vol. 28 no. 19 2012, pages 2417–2424
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts456

Sequence analysis Advance Access publication July 24, 2012

YAHA: fast and flexible long-read alignment with optimal

breakpoint detection
Gregory G. Faust1 and Ira M. Hall2,3,*
1Department of Computer Science, 2Department of Biochemistry and Molecular Genetics and 3Center for Public Health
Genomics, University of Virginia, Charlottesville, 22908 VA, USA

Associate Editor: Martin Bishop

ABSTRACT

Motivation: With improved short-read assembly algorithms and the

recent development of long-read sequencers, split mapping will soon

be the preferred method for structural variant (SV) detection. Yet, cur-

rent alignment tools are not well suited for this.

Results: We present YAHA, a fast and flexible hash-based aligner.

YAHA is as fast and accurate as BWA-SW at finding the single best

alignment per query and is dramatically faster and more sensitive than

both SSAHA2 and MegaBLAST at finding all possible alignments.

Unlike other aligners that report all, or one, alignment per query, or

that use simple heuristics to select alignments, YAHA uses a directed

acyclic graph to find the optimal set of alignments that cover a query

using a biologically relevant breakpoint penalty. YAHA can also report

multiple mappings per defined segment of the query. We show that

YAHA detects more breakpoints in less time than BWA-SW across all

SV classes, and especially excels at complex SVs comprising multiple

breakpoints.

Availability: YAHA is currently supported on 64-bit Linux systems.

Binaries and sample data are freely available for download from

http://faculty.virginia.edu/irahall/YAHA.

Contact: imh4y@virginia.edu

Received on May 7, 2012; revised on June 25, 2012; accepted on

July 15, 2012

1 INTRODUCTION

Structural variation (SV) is a major source of diversity in germ-

line and cancer genomes, but is difficult to map relative to other

forms of variation. Since 2008, most sequence-based studies of

SV have used paired-end mapping (PEM), which relies upon

clustering of discordant paired-end reads that map to either
side of an SV breakpoint. Now, with the rapid improvement of

short-read assembly algorithms and the development of third-

generation long-read sequencing technologies, split-read or

split-contig mapping (we refer to both as SRM) will soon be
the preferred method. SRM is significantly more precise and

less error prone than PEM. Yet, current read mappers are not

well designed for aligning breakpoint-containing query se-

quences. Here, we present YAHA, a flexible hash-based aligner

that is explicitly designed for optimal SV breakpoint detection
from long query sequences.

To accurately determine SV breakpoints using SRM, an

aligner must do four things well. First, it must accurately

determine the best set of alignments that cover the length of

the query; the ‘Optimal Coverage Set’ (OCS). This is best accom-
plished by using an algorithm that provides provably optimal

results given some objective function. Our use of a best-path

algorithm on a directed acyclic graph (DAG) of alignments
does just that. The objective function is specifically tuned to

finding SV events by taking into account the length and quality
of alignments, the number of alignments in the OCS and the

genomic distance between those alignments. Second, it must be

able to report alignments similar to those in the OCS in order to
allow for the use of combinatorial breakpoint detection algo-

rithms that cluster multiple mappings per read (Hormozdiari
et al., 2009; Quinlan et al., 2010). YAHA’s use of an optimal

DAG algorithm for discovery of the OCS and its ability to find

collections of alignments similar to the OCS are completely
novel. Third, it must be able to generate a large number of

viable alignments to feed the above two algorithms. Long-read
aligners such as BWA-SW (Li and Durbin, 2010) and AGILE

(Misra et al., 2011) severely restrict the number of alignments

under consideration early in query processing. While this im-
proves speed, it reduces the likelihood of finding the OCS and

precludes finding alignments similar to them. YAHA can pro-
duce the required large number of alignments. Optionally, the

user can choose to output all of them. Other aligners such as

MegaBLAST (Altschul et al., 1990) and SSAHA2 (Ning et al.,
2001) can also produce numerous alignments, but have no notion

of an OCS. Fourth, the aligner must be able to run in a reason-
able amount of time. YAHA uses a unique combination of heur-

istics and optimizations to accomplish this. We use a hashing

scheme similar to SSAHA, but with a considerably faster ap-
proach for sorting hash table seeds. We use banded Smith–

Waterman (SW) and a modified version of MegaBLAST’s
X-Dropoff heuristic for extensions. Finally, we calculate the

OCS without unduly impacting performance by using a time

and space optimized DAG algorithm. YAHA is the only aligner
that does all four of these things well, and therefore is uniquely

well suited to SV breakpoint detection. In addition, it is import-
ant to score alignments using a metric that is capable of accom-

modating a wide range of error profiles in order to perform well

on queries from diverse sources, including existing (Eid et al.,
2009) and future (Schadt et al., 2010) long-read sequencing tech-

nologies. To accomplish this, YAHA utilizes Affine Gap Scoring
(AGS) with user specified cost/reward parameters.

In the next section, we explain YAHA’s algorithms in more
detail. In Section 3, we show the efficacy of these algorithms

in three comparison tests. First, we compare YAHA with*To whom correspondence should be addressed.

� The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://faculty.virginia.edu/irahall/YAHA


MegaBLAST and SSAHA2 in their capacity to generate a large

number of accurate alignments in a reasonable amount of CPU

time. Second, we compare YAHA with BWA-SW in their ability

to find the single best alignment over a range of read lengths and

error rates. Third, we compare YAHA with BWA-SW in their

ability to accurately identify SV breakpoints over a range of SV

event categories.

2 METHODS

YAHA uses a ‘seed and extend’ strategy for DNA alignment. Alignments

are output in SAM format (Li et al., 2009). YAHA breaks the alignment

process into six stages. Steps 5, ‘Optimal Query Coverage’ (OQC) and 6,

‘Filter By Similarity’ (FBS), are not included in any other DNA aligner.

Although many of the basic algorithms used by YAHA are not novel,

their inclusion in a DNA alignment tool is.

2.1 Find seed matches

A base-pair sequence of fixed-length k is called a ‘k-mer’. YAHA uses a

hash table index to locate the set of locations (seeds) where each k-mer in

the query sequence appears as a subsequence of the reference. There are

three parameters that control the creation of the index; seed length (k),

the ‘skip-distance’ between the starting locations of seeds in the reference,

and the maximum allowed hits for a k-mer before it is considered too

repetitive to be useful (‘maxHits’). Typical values of k range from 8 to 15.

The skip-distance can range from 1 (max overlap) to k (no overlap).

YAHA builds an index once per desired combination of reference

genome and index parameters and stores it in a file. While performing

alignments, the index file is accessed via memory-mapped IO as if it were

stored in RAM.

For mammalian genomes, and k� 15, a very large percentage of all

unique k-mers will appear at least once in the genome. Therefore, a nat-

ural way to form a hash key is to compress the k-mer using 2 bits per

base, then use it as an offset into a table with an entry for each k-mer

(Fig. 1A). The list of reference hits for all keys are concatenated in one

large array called the Reference Offset Array (ROA). This index structure

is the one used in YAHA and was taken directly from SSAHA. Similar

indexing strategies are used by MegaBLAST, BLAT (Kent, 2002),

and others. For mammalian genomes, we find that k¼ 15 and

skip-distance¼ 1 (a ‘15/1’ index) performs quite well, and we use such

an index for all YAHA test runs discussed below. Like MOSAIK (http://

bioinformatics.bc.edu/marthlab/Mosaik), YAHA allows for sampling of

hits in the reference down to the specified maxHits parameter setting.

This can have a dramatic impact on the trade-off between sensitivity and

run-time, as we later show in Section 3.

2.2 Combine seed matches into ‘fragments’

Next, seeds are joined together to form extended seeds or ‘fragments’ of

contiguous matching bases between the query and the reference (Fig. 1B).

Seeds that can be strung together in this way appear on the same

‘diagonal’ in a plot of Reference Offset (RO) versus Query Offset (QO)

(Fig. 1C). The query length (QL) determines the number of k-mers that

appear in the query. Let N equal the sum over QL of the number of

reference hits for the k-mer starting at each query offset. To find extended

seeds, many aligners collect all N seeds for a query into an array and use

an O(NlogN) sort to collocate seeds to be placed in a fragment. However,

since the seeds for each k-mer are presorted by RO in the ROA, YAHA

Fig. 1. (A) Starting at each location in the query, we form a k-mer which is then converted to a hash key by compressing the bases in the k-mer using

2-bits per base. That hash key is then used to directly index into the Hash Array, giving the starting offset and length of the subset of the ROA that

contains the collection of reference locations for that k-mer. (B) Next, seed matches from the query and reference that fall along the same diagonal are

collected into extended seeds called ‘fragments’ by merging the pre-sorted ROA regions for each query location using a Binary Heap. (C) In any given

region of the reference, many fragments can be included in a potential alignment. YAHA uses a graph algorithm to find the set that maximizes the

estimated score. In this example, fragments 1, 2 and 4 form the best alignment. (D) During the Optimal Query Coverage algorithm, we will find the best

collection of ‘primary’ alignments (green lines) that has the highest non-overlapping sum of scores. Filter By Similarity is then used to determine the

remaining ‘secondary’ alignments (blue lines) that are highly similar to any primary alignment. The remaining alignments (red lines) are not included in

the output for the query.

2418

G.G.Faust and I.M.Hall

http://bioinformatics.bc.edu/marthlab/Mosaik
http://bioinformatics.bc.edu/marthlab/Mosaik


instead performs a QL-way merge of the presorted ROA regions. A

Priority Queue (Binary Heap) is used to aid the merging process. This

approach reduces the complexity to an upper bound of NlogQL because

the heap will contain a maximum of QL entries and will become smaller

over time as loci on the query exhaust their lists of seed matches.

In addition, we do not need to create the large N element array, saving

memory footprint and possibly improving cache locality. To the best of

our knowledge, no other hash based aligner uses this optimization to

reduce the cost of sorting the seed matches.

2.3 Combine fragments into an alignment

YAHA next finds the best potential alignment in each region of the ref-

erence by combining the fragments that contribute to the highest esti-

mated alignment score in that region. Selecting fragments can be difficult

in regions with tandem repeats as there may be numerous overlapping

fragments with various distances between their diagonals. We calculate

the estimated score for each possible collection of fragments in the region

using the AGS parameters; fragments are scored as matches, while dif-

ferences between fragment diagonals are scored as a single indel. YAHA

uses a graph algorithm that finds the path with the maximum estimated

score (Fig. 1C). The nodes of the graph (colored lines) represent frag-

ments, and the edges (gray lines) represent the cost or benefit of one

fragment succeeding another in the alignment. Since fragments earlier

in the query can only be succeeded by fragments later in the query, the

graph is directed and acyclic (a ‘DAG’), with a maximum of n2/2 edges

for n fragments. In DAGs, such min/max path algorithms need visit each

edge only once in the proper (topological sort) order. By placing the

nodes in an array and presorting them by starting QO using a conven-

tional O(NlogN) sort, we perform the graph algorithm without ever

forming the edges. This saves space and improves cache behavior. Each

node is visited sequentially while checking against all nodes above it in the

sorted array. If an edge is allowed between two nodes, we immediately

score and relax the edge, resetting the best score and best-path

back-pointer in the later node when appropriate.

Traditionally, the task of selecting the best seed matches to include in

an alignment has been performed by using Dynamic Programming (DP)

(Pearson and Lipman, 1988). Straightforward DP implementations re-

quire time and space proportional to n2. However, the Hirschberg algo-

rithm (Myers and Miller, 1988), reduces the DP space requirement to

O(n), but approximately doubles the runtime. The graph algorithm

used in YAHA also uses time proportional to n2, and space proportional

to n, but without this added complexity. We reuse this graph algorithm in

the OQC phase described below.

Once a best set of fragments is found for a reference region, it is placed

into a potential alignment to be completed as described below. If any of

the remaining fragments from this reference region do not overlap on the

query with any potential alignments already found in this region, they are

used in another run of the graph algorithm. This process continues until

there are no remaining fragments in an uncovered portion of the query.

We next discard all potential alignments that contain a number of seed

matches that falls below a user specified threshold (minMatch). It is

common for aligners to define this threshold in terms of the number of

seed hits from the index. As the seeds can be overlapping, YAHA instead

uses a threshold for the total number of non-overlapping bases that

appear in seeds. We believe such a threshold is both more accurate and

easier for the user to manage.

2.4 Complete alignments using DP

YAHA now takes each potential alignment from above, and completes

the calculation of the full alignment. It uses a modified version of SW

only to find the portions of the alignment that fall between fragments,

and to find the best forward and backward extensions for the alignment.

Our implementation of SW calculates AGS with a well known strategy to

reduce memory usage first proposed by (Gotoh, 1982). YAHA also uses a

common heuristic called ‘banding’ that reduces costs by calculating only

the DP values near the diagonal of the array. Because the endpoints of

extensions are not known, we heuristically use twice the bandwidth

during extension as used between fragments, and a simplified version

of the well known ‘X-Dropoff’ heuristic (Zhang et al., 1998) which

stops extending an alignment when the score for the current extension

is more than X below the best score for a shorter extension. YAHA

almost always finds the optimal local alignment. However, due to the

use of various heuristics such as X-Dropoff and banding, this is not

guaranteed.

2.5 Apply Optimal Query Coverage algorithm

Optionally, YAHA can report all alignments identified through the above

steps. This feature is invaluable when it is important to gain knowledge

about the uniqueness of a query sequence or the distribution of repeats in

the reference genome. However, in order to define SV breakpoint loca-

tions, it is often preferable to ignore the potentially large numbers of

irrelevant alignments that arise from repeats embedded within larger,

more unique portions of the query. For this purpose we have devised

an algorithm called OQC, which finds the set of alignments that cover the

length of the query with the maximum coverage score. This Optimal

Coverage Set (OCS) is composed of one or more ‘Primary Alignments’.

This algorithm greatly aids in reconstructing breakpoint architecture and

is a crucial, and novel, feature of YAHA.

To find the OCS, we use a max-path DAG algorithm similar to that

described in Section 2.3 above. The nodes now represent the alignments,

and the edges represent one alignment being included with another in the

OCS (Fig. 1D). We again presort the alignments by starting QO to avoid

creating the edges. In cases where two alignments overlap at the break-

point, as occurs when structural variants are generated by homology

dependent mechanisms, the score of the better alignment in the overlap

region is used. In order to avoid an overly fractured OCS, a penalty is

applied for each split between adjacent alignments. This penalty is the

product of two factors. The first is a user supplied parameter called the

Breakpoint Penalty (BP). The second is a Genomic Distance Penalty

(GDP) calculated as log10 of the number of base pairs along the reference

genome between the two alignments. The user can specify a maximum

GDP (maxGDP). Alignments on separate chromosomes always incur the

maxGDP. Through these two parameters, the user can control how sen-

sitive the query coverage score is to genomic distance, and how large the

non-overlapping portion of an alignment must be before it is included in

the OCS. With a relatively high maxGDP, collections of alignments near

each other on a reference chromosome will be favored, helping to identify

deletions, tandem duplications and inversions. A low maxGDP will be

more neutral to genomic distance. A higher BP will favor alignment sets

with fewer, larger, alignments.

We believe that this OQC calculation allows for the discovery of bio-

logically meaningful collections of alignments. We show below that

YAHA’s OQC algorithm is better at discovering SV events than the

heuristic approach used by BWA-SW for finding split alignments.

2.6 Apply Filter By Similarity algorithm

Optionally, we next perform the FBS step to identify ‘Secondary

Alignments’ that have a high length overlap and score agreement with

a primary alignment (Fig. 1D). This allows the user to gain knowledge of

repetitive mappings specifically for those sections of the query that com-

prise a primary alignment. This is required for clustering algorithms de-

signed to identify breakpoints in repetitive genomic regions, and may be

useful for characterizing the repetitive structure of fully sequenced refer-

ence genomes (Bailey et al., 2002) This novel feature of YAHA combines

the utility of finding large numbers of alignments with the advantage of

defining the optimal collection along the query.

2419

Fast and flexible long-read alignment with optimal breakpoint detection



3 RESULTS

To demonstrate YAHA’s power and flexibility, we measure its

performance in three test scenarios. First, we show that YAHA is
sufficiently sensitive to find large numbers of alignments for

queries with repeated (sub)sequences. Second, we measure

YAHA’s ability to accurately find alignments when using the

OQC algorithm for non-chimeric queries. Third, we test the
OQC and FBS algorithms by measuring YAHA’s ability to

detect SV breakpoints in chimeric queries. For each test, we

compare YAHA to what we believe to be best of breed among

commonly used aligners for that specific task. In the sensitivity
test, we compare against MegaBLAST because it is generally

considered one of the most sensitive heuristic aligners for finding

a large number of alignments in a practical amount of time.
Because we use the same indexing strategy as SSAHA2, we

also include it in this test. BWA-SW only reports primary align-

ments so cannot be included in the sensitivity comparison. We do

not include MegaBLAST or SSAHA2 in the accuracy or SV
detection tests because neither has any strategy for finding an

OCS. For these tests, we compare our results to BWA-SW which

is the most widely used long-read aligner and the most challen-
ging competitor to YAHA for finding primary alignments on

either chimeric or non-chimeric queries. In particular, it has

already been shown that BWA-SW outperforms SSAHA2 and

BLAT on non-chimeric reads (Li and Durbin, 2010). In all
these tests, CPU time is an important metric, as any alignment

task is easy to perform by brute force if an aligner is given

unlimited computer resources. Finally, we note that it is diffi-
cult to compare results from different aligners because most

are highly parameterizable, but do not share all the same par-

ameters. We have made a considerable effort to select the most

effective parameters to use for YAHA and the other aligners,
but we cannot exclude the possibility that untested parameter

combinations might produce superior results to those we pre-

sent here.
The data for the accuracy test was generated using WGSIM

(Li et al., 2009) to sample reads from the hg18 reference genome

with the lengths and error rates shown in Table 2. For the sen-
sitivity test, we focus on the first of these datasets; 100000

queries of length 100 with a 2% error rate. For the SV detection

test, we used our own tool, SVsim, to simulate SV events of
various types.

All tests were run on a server class machine with 4 Xeon
X7350 processors, 128 GB of shared RAM, running CentOS

5.5. YAHA’s 15/1 index and compressed reference total 15.5

GB, SSAHA’s total 22.3 GB and BWA-SW’s index and refer-

ence total 7.4 GB. However, we believe that index size is a minor
concern given modern computing environments.

3.1 Sensitivity test

To test sensitivity, we ran YAHA bypassing the OQC and FBS
algorithms and output all alignments that pass applicable thresh-

olds. An issue arises in trying to compare results from YAHA,

MegaBLAST, and SSAHA2 because they do not have the same

threshold parameters, and SSAHA2 does not support AGS. To
equalize results, we applied an external filter to keep only align-

ments greater than or equal to 50 bp in length, and ran each

aligner with its thresholds set so that such alignments were not

filtered out internally. Also, each aligner uses different criteria to
determine if two alignments are ‘distinct’ enough to report sep-
arately. To account for this, we filtered out alignments that are

overlapping on the reference with another alignment for the
same query. We refer to the final set of filtered alignments as
‘GE50U’ alignments. As there is no practical way to determine

every location in the reference that can be aligned to a given
query, we measure relative sensitivity in this test. Version
2.2.19 of MegaBLAST was run using parameter settings that

are as sensitive as possible with a seed length of 15. The result
is the baseline against which we compare the sensitivity of
YAHA and SSAHA2.

Seven aligner runs are used in this test (Table 1). We study
four YAHA runs with parameter settings representing different
points along the sensitivity spectrum. For three of the runs, we

used a minMatch of 15 (one seed hit) and a maxHits of 65 525
sampled (Y1), 10 000 sampled (Y2) and 10 000 unsampled (Y3).
The fourth run (Y4) used faster but less sensitive parameters;

maxHits of 650 unsampled and minMatch of 20. We also
study two runs of version 2.5.1 of SSAHA2. The first (S1)
used SSAHA2’s built-in 454 mode, which implies many

SSAHA2 parameters, including ones for the Crossmatch
back-end, and a 13/3 index. SSAHA2’s default and solexa
modes do not perform well in this test and are not included.

The second (S2) also used the 454 mode Crossmatch parameters,
but with a 15/1 index, SSAHA2 default value of 10000 for
maxHits, and a minMatch of 1. These parameters make this

run directly comparable to the Y3 run.
Table 1 shows the test results. The percentage of queries with

the same number of GE50U alignments as M is similar across

runs. In fact, 64% of the queries produce the same number of
GE50U alignments across all seven runs. Of these, 97.7% pro-
duce a single GE50U alignment. This indicates there is high

agreement between aligners for queries that map to unique loca-
tions on the reference. In addition, all of the YAHA runs pro-
duce significantly more total and GE50U alignments per second

than any other aligner runs.
Y1 uses the most sensitive YAHA parameters possible for a

15/1 index, and produces more total alignments, more GE50U

alignments and more queries with a greater number of GE50U
alignments, in less runtime than MegaBLAST. This is a striking
result. We analyze it further by expanding the last three columns

of the Y1 row of Table 1 into a histogram of the difference in the
number of GE50U alignments in the Y1 run versus M (Fig. 2).
This shows that the two aligners can differ in the number of

alignments for queries with highly repetitive (sub)sequences by
five orders of magnitude. Yet, the graph is highly skewed in Y1’s
favor, showing that YAHA is significantly more sensitive than

MegaBLAST at identifying large numbers of alignments for such
queries, while using less runtime.
YAHA greatly outperforms SSAHA2. For example, Y3 and

S2 use comparable parameters, yet Y3 reports �297� more
GE50U alignments at �12� greater speed (GE50U/s). The al-
gorithmic basis for this dramatic difference in sensitivity is un-

clear. While S1 fared somewhat better, we note that this disparity
persists across a wide range of SSAHA2 parameters (data not
shown).
Y2 and Y3 agree in all parameter settings except Y2 uses an

index with random sampling of k-mers that appear more than

2420

G.G.Faust and I.M.Hall



10 000 times in the hg18 genome. More than 99.9996% of all
15-mers appear fewer than 10 000 times in hg18, yet Y2 requires

�4� the runtime and produces �4.5� the number of GE50U
alignments. This shows that the very few highly repetitive k-mers

greatly impact queries that contain them. It also shows, together
with the use of sampling in Y1, the improvement in sensitivity
derived from sampling such k-mers instead of excluding them.

Over 99.99% of all possible 15-mers appear fewer than
650 times in hg18. Therefore, even without using sampling, this
acts as a reasonable maxHits cutoff for relatively fast runs. Y4

uses this maxHits threshold, and further reduces runtimes by
using a minMatch of 20 instead of 15. These prove to be effective

settings, as Y4 produces �1.6� as many GE50U alignments per
CPU second as the other YAHA runs, and�2.5� as many asM.
Given these results, we use 650 as the maxHits threshold for

YAHA in the accuracy test below. The nearly 11.7 million
total alignments in the Y4 run act as the input to the OQC al-

gorithm across the 100 000 queries in the first dataset of the ac-
curacy test as we discuss next.

3.2 Accuracy test

We now compare the accuracy of YAHA to BWA-SW in finding
primary alignments. We use the same process for generating syn-

thetic queries as used in the accuracy test in the BWA-SW paper.

However, we use slightly different accuracy metrics. In that

study, they determined the false positive rate using ‘mapping

quality’, a heuristically determined measure of an aligner’s con-

fidence in the uniqueness of its alignments. Instead, we use as the

benchmark the optimal alignment and score of each generated

read at the source reference location found by SSEARCH, a tool

from the FASTA suite (Pearson and Lipman, 1988) that uses full

SW to find the best local alignment. For each aligner, we place

each query into one of four categories. If no alignment was

generated for a query, it is a false negative. If a primary align-

ment matches the optimal alignment found by SSEARCH, it is a

‘match’. For each remaining query, we independently calculated

the best non-overlapping score of the alignment(s), called the

Coverage Score (CS). If the CS is less than the SSEARCH

score, it is a false positive. If the CS equals or exceeds the

SSEARCH score, the alignment(s) produced are at least as

viable as the one from the source location. Such queries are

not real false positives, and are reported in their own category.

We believe that the use of externally verified alignment scores is a

far less biased and more precise metric of aligner accuracy be-

cause it isolates the effects of alignment heuristics from the map-

ping quality heuristics.
BWA-SW version 0.5.8 was run with default settings. YAHA

was run with OQC turned on, BP¼ 5, maximum GDP

(maxGDP)¼ 5, maxHits¼ 650, and varying values for

minMatch of 20, 26, 38, 100 and 500 for the different QLs, re-

spectively. Table 2 shows the results of the BWA-SW and

YAHA runs using these 15 datasets. The aligners differ most

on the 100-mer queries with 5% and 10% error rates, and the

200-mer queries with 10% error rate. These three datasets are the

most challenging for both aligners, but YAHA has a significantly

lower false positive and especially false negative rate, accounting

for most of the large difference in these metrics shown in the

Totals column. YAHA has a lower false negative rate for six

of the datasets, versus five for BWA-SW. However, for three

of the datasets in which BWA-SW has a lower false negative

rate, YAHA merely fails to align a single query. YAHA has a

lower false positive rate for eleven of the datasets, versus two for

BWA-SW. YAHA has a lower sum of error rates for ten of the

datasets, versus two for BWA-SW. The aggregation of results by

query and by dataset both contain biases, albeit different ones.

The former is biased by the fact that the datasets do not all

Table 1. Results of the sensitivity test

Alignments Versus MegaBLAST

Run Aligner and parameters CPU secs Total GE50U A/Sec GE50U/Sec 4M ¼M 5M

M MegaBLAST: wordLen¼ 15, score¼ 15 190 773 4 012 294 854 1 827 862 215 21032 9581 0 100 000 0
Y1 YAHA: minMatch¼ 15, maxHits¼ 65525S 160 501 6 085 988 010 2 343 744 189 37919 14603 30638 68357 1005
Y2 YAHA: minMatch¼ 15, maxHits¼ 10000S 91097 3 403 790 544 1 470 115 221 37364 16138 23789 68387 7824
Y3 YAHA: minMatch¼ 15, maxHits¼ 10000 22385 950 852 793 327 644 121 42477 14637 20021 68371 11608
Y4 YAHA: minMatch¼ 20, maxHits¼ 650 284 11680 597 6 796 153 41129 23930 716 69536 29748
S1 SSAHA2: 454 mode 1850 6 066 013 5 488 465 3279 2967 834 66634 32532
S2 SSAHA2: minMatch¼ 1, maxHits¼ 10000 937 2 633 833 1 101 352 2811 1175 120 65622 34258

The first two columns give the name and aligner parameters, column 3 gives the runtimes, columns 4–7 contain the total alignments, GE50U alignments, total alignments/

second, and GE50U alignments/second, and the last three columns show the number of queries with4, ¼, or5 the number of alignments as the MegaBLAST run.

Fig. 2. Histogram of the number of queries in the Y1 YAHA run with

varying numbers of greater, equal and fewer GE50U alignments than

MegaBLAST (M). Note the log10 scale bucket sizes. The total number

of queries above 0 is 30 638 and below 0 is 1005 as in Table 1.

2421

Fast and flexible long-read alignment with optimal breakpoint detection



contain the same number of queries, while the latter is biased by

datasets with a small number of queries that differ. Nonetheless,

YAHA achieves better results than BWA-SW for both aggrega-
tion strategies.

As a further test of accuracy, we compare all matching align-
ment scores against the optimal scores determined by

SSEARCH. For reasons discussed in Section 2, YAHA pro-
duced sub-optimal scores for 20 of 522244 matching alignments

(0.0038%). BWA-SW produced a sub-optimal score for 1 of

483786 matching alignments (0.0002%). All the sub-optimal
alignments from both aligners were from datasets with a 10%

error rate.
Summed over the datasets, YAHA uses less CPU time than

BWA-SW. This is impressive given that YAHA considers many
more alignments. For example, in Table 1 the Y4 run on

100-mers at 2% error rate produces �11.7 million alignments,

from which the OQC algorithm selects 99696 primary align-
ments. In contrast, BWA-SW severely restricts the number of

potential alignments early during query processing. By consider-

ing many more alignments, YAHA achieves greater accuracy.
The advantages of using many alignments as input to OQC be-

comes more apparent in our test of SV breakpoint detection in
the next section.

3.3 SV detection test

Finally, we compare YAHA to BWA-SW in their ability to cor-

rectly identify SV breakpoints with split-read mappings. This is
an important criterion for evaluating long read aligners, because

as read lengths grow, split-read mapping is rapidly replacing

PEM as the method of choice for SV detection. We constructed
three simulated datasets using SVsim, a tool we devised for this

purpose (Faust and Hall, in preparation). First, we simulated

10 000 SV events with lengths from 100 to 10K bases in
random genome locations with equal numbers of deletions,

tandem duplications, and inversions, as well as insertions from

a random distant genome location. For events of length �500,

we generated a single ‘contig’ spanning the event, with 500 flank-

ing bases on each side. For larger events, we generated a contig

for only the left breakpoint, with 500 flanking bases. We then

generated 500-mer reads by sampling these contigs with WGSIM

using a 2% error rate and 5� coverage. We examined only a

single breakpoint for each variant, yielding 10 000 total break-

point calls. BWA-SW was run with default settings except the

z parameter was set to 1, 2, 5 and 10 to investigate the trade-off

between runtime and sensitivity. YAHA was run with similar

parameters as in the accuracy test, using a minMatch of 25

with increasing values of maxHits. We measured the percentage

of queries with a split alignment that verified the correct SV

breakpoint (within 5 bases) and the total number of verified

breakpoints (Fig. 3A).
Both aligners perform very well on this dataset, identifying

�98% of the simulated breakpoints. However, YAHA verifies

breakpoints in more queries than BWA-SW at comparable run-

times. This test shows that both aligners are quite effective at

identifying isolated SV breakpoints in random (mostly

non-repetitive) genomic regions.
To investigate performance at breakpoints involving repetitive

sequences, we simulated 10000 Alu insertion events. We ran-

domly selected 1000 intact Alu elements with minimal divergence

to the canonical active elements (milliDev �10 and length �300)

from the UCSC RepeatMasker annotation track, and injected

each into 10 random genome locations. Read simulations and

performance metrics are as above. This is a challenging test, be-

cause to detect an Alu insertion by split-read mapping, the

breakpoint-containing read must be aligned correctly not only

to the flanking sequence at the ‘recipient’ locus (where the Alu

inserted), but also to the Alu element at the correct ‘donor’ locus.

This is difficult given the extremely large number of Alu elements

in the reference genome, the high DNA sequence similarity

shared between them, and the simulated error rate in the reads.

Table 2. Accuracy comparison of YAHA to BWA-SW over 15 datasets generated in a similar fashion as those in the BWA-SW paper

100K 100bp Reads 50K 200bp Reads 20K 500bp Reads 10K 1000bp Reads 1K 10000bp Reads

Metric 2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10% TOTALS

BWA-SW
CPU secs 160 135 102 220 186 140 259 194 154 219 193 142 155 146 129 2534
% False negatives 0.44 5.21 27.4 0.00 0.13 5.44 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 6.61
% Matching 96.0 89.3 64.0 98.2 97.5 89.3 98.9 98.9 98.2 99.3 99.2 99.2 99.8 99.5 98.1 89.10
% CS� SSEARCH 2.96 2.92 2.69 1.74 1.71 1.66 1.09 1.02 1.13 0.68 0.74 0.66 0.20 0.50 0.90 2.21
% False positives 0.56 2.53 5.85 0.11 0.70 3.63 0.01 0.12 0.56 0.02 0.02 0.12 0.00 0.00 1.00 2.09
% Total error 1.00 7.74 33.3 0.11 0.83 9.08 0.01 0.12 0.66 0.02 0.02 0.12 0.00 0.00 1.00 8.70

YAHA
CPU Secs 284 241 176 212 171 109 245 188 112 108 86 58 81 79 66 2216
% False negatives 0.32 0.12 0.55 0.03 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.07 0.00 0.00 0.00 0.19
% Matching 96.3 95.5 91.8 98.1 97.9 97.2 99.0 98.8 98.8 99.3 99.2 99.1 99.9 99.7 99.2 96.18
% CS� SSEARCH 2.83 3.03 3.72 1.71 1.77 1.87 1.04 1.18 1.06 0.71 0.81 0.76 0.10 0.30 0.80 2.42
% False positives 0.55 1.31 3.97 0.16 0.34 0.93 0.02 0.02 0.11 0.00 0.01 0.03 0.00 0.00 0.00 1.21
% Total error 0.87 1.43 4.52 0.19 0.35 0.96 0.02 0.03 0.11 0.01 0.02 0.10 0.00 0.00 0.00 1.40

The column headings indicate the read length and number of reads in each group, as well as the error rates impressed on the reads. Each query is put into one of four categories

(row) depending on the accuracy of the alignment (see text for details). The CPU time in seconds, and total error rate for each run are also shown. The right-most column

shows the aggregate runtimes and category percentages.

2422

G.G.Faust and I.M.Hall



As a result, both aligners identify fewer breakpoints from far

fewer queries for Alu insertions than for the standard SVs. Yet,

YAHA again identifies slightly more breakpoints (not shown)

from more queries (Fig. 3B). For example, using �50K CPU

seconds YAHA identifies 79.6% of breakpoints from 24.5% of

queries, while BWA-SW finds 76.8% of breakpoints from 21.7%

of queries. In addition, this test shows the utility of YAHA’s FBS

algorithm. When both primary and secondary alignments are

taken into account, YAHA identifies 96.3% of breakpoints

from 43.2% of queries. These additional alignments enable the

discovery of repetitive element insertion events using combina-

torial clustering algorithms (Hormozdiari et al., 2009; Quinlan

et al., 2010).
Recent evidence indicates that complex genomic rearrange-

ments (CGRs) are a common form of SV in both normal and

cancer genomes (Quinlan and Hall, 2012). The most extreme

example of this is chromothripsis (Stephens et al., 2011), where

chromosome regions are extensively rearranged due to the repair

of chromosome shattering events involving hundreds of break-

points. CGR events pose a unique challenge for breakpoint dis-

covery because, with long-reads or assembled contigs, numerous

breakpoints may be present on a single query. YAHA’s OQC

algorithm is designed to select the optimal collection of align-

ments and should handle such situations better than heuristic

strategies. To test this, we simulated 1500 chromosome shatter-

ing events each with a total length of �30 kilobases. Of these,

1000 involve a single random genomic location, and 500 combine

fragments from two different genomic locations. Fragments were

generated from random locations within the selected regions,

with an average size of 300 and a minimum size of 50. Of

these fragments, 30% were deleted, 10% duplicated, and 50%

inverted. The resulting collection of fragments was then ran-

domly shuffled and ‘ligated’ into a single contig. This generated

a total of 129 915 CGR breakpoints. The contigs were used dir-

ectly as long reads after impressing two different error profiles.

The first models a contig reconstructed via de novo assembly of

short reads, and has a 1% error rate, 10% of which are indels.

The second models a single long read from third generation

sequencing technology, such as the forthcoming Oxford

Nanopore instrument, and has a 4% error rate, 90% of which

are indels.
YAHA greatly outperforms BWA-SW with the long CGR

contigs. In the 1% error profile data, YAHA finds �96% of

the breakpoints, versus �86% for BWA-SW (Fig. 3C). In the

4% error profile data, using the default AGS parameters, YAHA

finds �67% of the breakpoints regardless of the maxHits setting,

while BWA-SW finds from 27.5% to 52.7% of the breakpoints

as the z parameter is increased. BWA-SW does not perform well

on this test with its default z¼ 1, and requires �2� the runtime

of YAHA to approach its sensitivity asymptote (Fig. 3D).
Both aligners use the same default AGS parameter settings

(Match¼þ1, Mismatch¼�3, GapOpen¼�5, GapBase¼�2).

However, these parameter settings are tuned for low error rates

and especially low indel rates, and are not optimal for the

high-indel CGR dataset with a 4% error rate. Thus, we re-ran

both aligners against the 4% error rate CGR dataset with AGS

parameters that increase the relative penalty for replacements

versus indels (Mismatch¼�5, GapOpen¼�2, GapBase¼�1).

While both aligners now do significantly better, YAHA still far

outperforms BWA-SW (Fig. 3D). BWA-SW now finds between

44% and 69% of the breakpoints, while YAHA finds �85%.

This shows the importance of using an alignment scoring strat-

egy, such as parameterized AGS, to handle the high error/indel

rates that exist in current and future third generation sequencing

technologies (Schadt et al., 2010).
The inclusion of a genomic distance penalty in the objective

function of YAHA’s OQC algorithm undoubtedly aids its per-

formance in these tests, as it allows YAHA to favor collections of

alignments for the OCS that are near each other in the genome.

4 CONCLUSION

We have shown that YAHA is a fast and effective all-purpose

aligner that outperforms best-in-class tools for very three differ-

ent tasks: (i) reporting all mappings per query; (ii) reporting the

single best mapping and (iii) identifying split-mappings that

define one or more SV breakpoints within a query. YAHA’s

main strength as a general alignment tool is that it simply

Fig. 3. Shown are graphs of the percentage of queries with which each aligner correctly verified an SV breakpoint for various types of SV events versus

the amount of CPU time consumed. Note the large improvement with the inclusion of YAHA’s secondary alignments in the Alu dataset. Also note the

marked improvement for both BWA-SW and YAHA in the CGR dataset with 4% error rate by changing the AGS parameters to lower the penalty for

indels relative to replacements. Still, YAHA outperforms BWA-SW with both sets of AGS parameters. Graphs C and D are shown with the same axes to

ease comparison.

2423

Fast and flexible long-read alignment with optimal breakpoint detection



attempts to identify all possible matches according to the param-

eters set by the user. YAHA is able to explore many possible

alignments without sacrificing speed through the use of a number

of pre-existing and novel heuristics, as well as optimized imple-

mentations of computationally intensive procedures such as

seed-match sorting, banded SW and max-path graph algorithms.
The most important and novel feature of YAHA is that it

determines the set of the alignments that cover a query using

an algorithm that provably optimizes a biologically relevant ob-

jective function tuned to SV breakpoint detection. This capabil-

ity, as well as the ability to report secondary alignments using

FBS, will be invaluable for SV mapping experiments that rely on

long reads or assembled contigs. As we have shown, these meth-

ods are especially powerful for defining breakpoints caused by

repetitive elements, and for reconstructing highly complex

genome rearrangements.

ACKNOWLEDGEMENTS

We thank Kevin Skadron for helping to guide this effort from

the beginning, Aaron Quinlan and William R. Pearson for many

useful conversations, and Royden Clark for assistance with

alignment testing pipelines.

Funding: This research was supported by an National Institute of

Health (NIH) New Innovator Award DP2OD006493-01 (I.H.), a

Burroughs Wellcome Fund Career Award (I.H.) and an NIH

Biotechnology Training Grant T32 GM08715 (G.F.).

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Bailey,J.A. et al. (2002) Recent segmental duplications in the human genome.

Science, 297, 1003–1007.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase molecules.

Science, 323, 133–138.

Gotoh,O. (1982) An improved algorithm for matching biological sequences. J. Mol.

Biol., 162, 705–708.

Hormozdiari,F. et al. (2009) Combinatorial algorithms for structural variation de-

tection in high-throughput sequenced genomes. Genome Res., 19, 1270–1278.

Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. Genome Res., 12,

656–664.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with Burrows–

Wheeler transform. Bioinformatics, 26, 589–595.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Misra,S. et al. (2011) Anatomy of a hash-based long read sequence mapping algo-

rithm for next generation DNA sequencing. Bioinformatics, 27, 189–195.

Myers,E.W. and Miller,W. (1988) Optimal alignments in linear space. Comput.

Appl. Biosci. CABIOS, 4, 11–17.

Ning,Z. et al. (2001) SSAHA: a fast search method for large DNA databases.

Genome Res., 11, 1725–1729.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence com-

parison. Proc. Natl Acad. Sci. USA, 85, 2444–2448.

Quinlan,A.R. et al. (2010) Genome-wide mapping and assembly of structural vari-

ant breakpoints in the mouse genome. Genome Res., 20, 623–635.

Quinlan,A.R. and Hall,I.M. (2012) Characterizing complex structural variation in

germline and somatic genomes. Trends Genet. TIG, 28, 43–53.

Schadt,E.E. et al. (2010) A window into third-generation sequencing. Human Mol.

Genet., 19, R227–R240.

Stephens,P.J. et al. (2011) Massive genomic rearrangement acquired in a single

catastrophic event during cancer development. Cell, 144, 27–40.

Zhang,Z. et al. (1998) Alignments without low-scoring regions. J. Comput. Biol., 5,

197–210.

2424

G.G.Faust and I.M.Hall


